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Abstract-The concept of monomial selection is introduced as a natural generalization of the 
multiplicative selection. It is proven that the equilibrium set of the multilocus multiallele population 
under monomial selection is generically finite. The result is new even in the multiplicative case. An 
upper bound for the number of equilibria is given. @ 2003 Elsevier Science Ltd. All rights reserved. 
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For a population, we consider a set L = { 1, . . . , I} of autosomal loci with allele genes aik at 
the ith locus (1 5 i 5 1, 1 < k 5 mi, rni 1 2). For each gamete g = alkl . .. a&, and each 
subset U C L, the corresponding subgamete gu is the part of g consisting of a& with i E U. 
In particular, gi = a& (1 5 i < 1). Obviously, g = gugv, where V is the subset of those loci 
which do not belong to U. The partitions U 1 V can be identified with all formally possible 
crossing-overs. If a crossing-over U 1 V occurs in meiosis then every gamete pair (g, h) produces 
the recombinant gametes guhv and hugv with equal probabilities r(U 1 V)/2, where r is the 
linkage distribution. The latter is supposed to be fixed in what follows. By definition, 

7-P I V) 2 0, Cr(U 1 V) = 1. 
WV 

A state p of the population on the gamete level is a probability distribution p(g) on the 
set P of all gametes: p(g) 2 0, Cp(g) = 1, where g runs over P. Given some fitness values 
X(g, h) = X(h,g) 2 0, X(g,g) > 0, the evolutionary equations under the corresponding selection 
and random mating are 

where . 
Q,(P) = c r(U I V) c Wgahv, hzwMmhvMwv) 

UIV hEI- 
(3) 
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and W(p) is the mean fitness, 

W(P) = c W9,h)P(9)P(h), 
g,hEr 

(4) 

see [l, Section 9.51. In (2), p’ means the state in the offspring generation while p is the parental 
state. The latter is an equilibrium if and only if p’ = p. 

Let us emphasize that Q,(p) are quadratic forms of p as well as 

W(P) = c QgW (5) 
9 

We introduce the monomial selection by setting 

where u+ are some positive integers. The values 

Xi (aij, , aiki) = Xi (aik< , aiji ) , 1 L:ji, h 5 mi, l<i<l (7) 

are independent positive parameters. If all vi = 1, the monomial selection turns into the standard 
multiplicative selection; cf. [2, Section 91. In general, the monomial selection is a generalization 
of the multiplicative selection such that there are some weights I+, 1 5 i 5 1, for the contributions 
of different loci. 

The total number of parameters (7) is 

m=i$mi(m.+l), 
z=l 

while in a general symmetric matrix (X(h,g)) the number of independent parameters is much 
more, namely, 

M = ;lrl(lrl + 11, Il?l = mlntz...rnl. 

For example, if all rni = 2, then M = 2l-‘(2’ + 1) in contrast to m = 31. 
The difference M-m is just the number of independent relations between the fitness values (6). 
Now, we bring all the parameters (7) together to a fitness vector X running over the fitness 

space RT. (The latter is the set of all nonzero m-tuples with nonnegative elements.) 

THEOREM. Under monomial selection, the equilibrium set is generically finite, and the total 
number of equilibria does not exceed 31rld1. 

The genericity means that the conclusion is true outside a proper algebraic subset of the fitness 
space. 

PROOF. According to (2), the set of equilibria is described by equations 

dg)W(d - Q,(p) = 0, g E r. (8) 

In addition, 

Note that (8) implies 

P(g)&(P) - dh)Q,W = 0, 9, h E r, (10) 
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a system of homogeneous equatiqns of degree 3. In addition, we replace equation (9) by a 
homogeneous equation of degree 1; namely, we fix a gamete y E r and write 

CPM - v(7) = 0, (11) 
cm- 

with a parameter r. 
According to the classical elimination theory, see, e.g., [3], system (lO),(ll) has a nontrivial 

complex solution p if and only if the pair (X, r) annihilates all resultants. This condition can be 
written as a system of algebraic equations 

where 

are some polynomials of r with polynomial coefficients R+r (A), Further, we consider two opposite 
cases. The first of them yields what we need, and the second one leads to a contradiction. 

(1) For each 7 E r at least one of polynomials &j,y(X) does not identically vanish. 
In this case, the system of equations 

&j,y(X) = 09 l<i<ij, Oljlji,,, (14 

with any -y E r defines a proper algebraic subset A, of the fitness space. The union 

A=UA, (15) 
YEr 

is also a proper algebraic subset. We prove that if a fitness vector X does not belong to A, 
then the corresponding equilibrium set Ex is finite. 

Suppose that EX is infinite. Then, there exists y E l? such that the set {p(r) : p E Ex, 
p(y) # 0) is infinite. The set EJ, consists of all nonnegative solutions of (8),(g). If 
p E Ex and p(y) # 0, then p is a nontrivial solution of (lO),(ll) with r = l/p(y). Hence, 
r = l/p(y) satisfies all equations (12). We see that every equation (12) has infinitely many 
solutions 7. Hence, X annihilates all coefficients &j,y(X) in (13). By definition of A, we 
have X E A-,, a fortiori, X E A. Thus, if X @ A, then Ex is finite. 

(2) There ex&s 7 E r such that all &,y(X, T) are identically zero. 
Now for every (X, r); system (lO),(ll) has a nontrivial complex solution p. To disprove 

this, we take T = 0 and specialize X as follows. 
Let X+(oij;,aik;) = 0 as long as ji # rki and let all Xi(aiki,aiki) = 1. By (6), X(g,g) = 1 

for all g and X(g, h) = 0 for g # h. Note that if guhv = hug”, then gv = hU and 
gv = hv, and hence, g = h. For this reason, the interior sum in (3) reduces to p2(g). The 
same is true for the whole Qg (p) because of (1). Thus, (10) becomes 

p(gMh) b(h) - p(g)) = ‘4 g,h E r. (16) 

Under the restrictions p(g) # 0 and p(h) # 9, (16) yields p(h) = p(g); i.e., p(g) is 
independent of g for p(g) # 0. Now equation (11) with r = 0 leads to a contradiction: 
ap(g) = 0 where o is the number of g such that p(g) # 0. 

If in Case 1, the number of complex solutions of (8),(g) is finite, then it is at most 31rl-l, 
by Besout’s theorem. Indeed, (9) is a linear equation and the sum of all equations (8) is 
an identity because of (5) and (9). I 
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COROLLARY. Under multiplicative selection, the equilibrium set is generic&y finite, and the 
total number of equilibria does not exceed 31rl-l. 

Certainly, the multiplicative case is the most interesting from a biological point of view. How- 
ever, the restriction to this case does not change the above proof. In fact, our proof requires the 
only following properties of the selection patterns: 

(1) X(g, h) is a polynomial of X(gi, hi), 1 < i I 1; 
(2) if X(gi, hi) = 0 for some i and some gi # hi, then X(g, h) = 0. 

Thus, our result is valid if X(g, h) is a sum (or even a positive linear combination) of monomial 
functions. For other recent results on finiteness of the equilibrium set see [4,5]. 
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